Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of Dark Current in HgCdTe Infrared Detectors

Identifieur interne : 000886 ( Main/Repository ); précédent : 000885; suivant : 000887

Modeling of Dark Current in HgCdTe Infrared Detectors

Auteurs : RBID : Pascal:14-0021562

Descripteurs français

English descriptors

Abstract

This paper presents modeling work carried out using a finite-element modeling approach. The physical models implemented for HgCdTe infrared photodetectors are reviewed. In particular, generation-recombination models such as Shockley-Read-Hall through a trap level in a narrow bandgap and Auger recombination are included. These well-established models are described using widely published analytical expressions. This paper highlights both the unique set of trap parameters found to fit the dark current as a function of temperature and composition for mercury-vacancy p-type-doped photodiodes and their use in a finite-element code. An equivalent set of trap parameters is also proposed for indium n-type-doped material in a p-on-n photodiode simulated in three dimensions. Device simulations also include the impact ionization process to fine-tune the saturation dark current. Finally, excess dark current is also modeled with the help of nonlocal band-to-band tunneling, which requires no fitting parameters.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0021562

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modeling of Dark Current in HgCdTe Infrared Detectors</title>
<author>
<name sortKey="Ferron, A" uniqKey="Ferron A">A. Ferron</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>CEA Grenoble, LETI, Minatec Campus, 17 Rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothman, J" uniqKey="Rothman J">J. Rothman</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>CEA Grenoble, LETI, Minatec Campus, 17 Rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gravrand, O" uniqKey="Gravrand O">O. Gravrand</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>CEA Grenoble, LETI, Minatec Campus, 17 Rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0021562</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0021562 INIST</idno>
<idno type="RBID">Pascal:14-0021562</idno>
<idno type="wicri:Area/Main/Corpus">000295</idno>
<idno type="wicri:Area/Main/Repository">000886</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical method</term>
<term>Auger recombination</term>
<term>Carrier lifetime</term>
<term>Dark current</term>
<term>Defect states</term>
<term>Doped materials</term>
<term>Doping</term>
<term>Energy gap</term>
<term>Finite element method</term>
<term>II-VI semiconductors</term>
<term>Impact ionization</term>
<term>Indium addition</term>
<term>Infrared detector</term>
<term>Modeling</term>
<term>Nitrogen addition</term>
<term>Numerical simulation</term>
<term>Phosphorus addition</term>
<term>Photodetector</term>
<term>Photodiode</term>
<term>Review</term>
<term>Temperature dependence</term>
<term>Theoretical study</term>
<term>Trap</term>
<term>Tunnel effect</term>
<term>Vacancy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Courant obscurité</term>
<term>Photodétecteur</term>
<term>Semiconducteur II-VI</term>
<term>Détecteur IR</term>
<term>Méthode élément fini</term>
<term>Article synthèse</term>
<term>Etat défaut</term>
<term>Bande interdite</term>
<term>Recombinaison Auger</term>
<term>Méthode analytique</term>
<term>Piège</term>
<term>Dépendance température</term>
<term>Lacune</term>
<term>Addition phosphore</term>
<term>Photodiode</term>
<term>Addition indium</term>
<term>Addition azote</term>
<term>Matériau dopé</term>
<term>Dopage</term>
<term>Simulation numérique</term>
<term>Ionisation choc</term>
<term>Effet tunnel</term>
<term>Durée vie porteur charge</term>
<term>8560G</term>
<term>8105D</term>
<term>0757K</term>
<term>8560D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents modeling work carried out using a finite-element modeling approach. The physical models implemented for HgCdTe infrared photodetectors are reviewed. In particular, generation-recombination models such as Shockley-Read-Hall through a trap level in a narrow bandgap and Auger recombination are included. These well-established models are described using widely published analytical expressions. This paper highlights both the unique set of trap parameters found to fit the dark current as a function of temperature and composition for mercury-vacancy p-type-doped photodiodes and their use in a finite-element code. An equivalent set of trap parameters is also proposed for indium n-type-doped material in a p-on-n photodiode simulated in three dimensions. Device simulations also include the impact ionization process to fine-tune the saturation dark current. Finally, excess dark current is also modeled with the help of nonlocal band-to-band tunneling, which requires no fitting parameters.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modeling of Dark Current in HgCdTe Infrared Detectors</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>2012 U.S. Workshop on the Physics and Chemistry of II-VI Materials</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>FERRON (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ROTHMAN (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GRAVRAND (O.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SIVANANTHAN (S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DHAR (N. K.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>CEA Grenoble, LETI, Minatec Campus, 17 Rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Microphysics Laboratory, University of Illinois at Chicago, 845 W. Taylor St.</s1>
<s2>Chicago, IL, 60607</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Defense Advanced Research Projects Agency, 3701 North Fairfax Drive</s1>
<s2>Arlington, VA, 22203-1714</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>3303-3308</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000507420230430</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0021562</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper presents modeling work carried out using a finite-element modeling approach. The physical models implemented for HgCdTe infrared photodetectors are reviewed. In particular, generation-recombination models such as Shockley-Read-Hall through a trap level in a narrow bandgap and Auger recombination are included. These well-established models are described using widely published analytical expressions. This paper highlights both the unique set of trap parameters found to fit the dark current as a function of temperature and composition for mercury-vacancy p-type-doped photodiodes and their use in a finite-element code. An equivalent set of trap parameters is also proposed for indium n-type-doped material in a p-on-n photodiode simulated in three dimensions. Device simulations also include the impact ionization process to fine-tune the saturation dark current. Finally, excess dark current is also modeled with the help of nonlocal band-to-band tunneling, which requires no fitting parameters.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G57K</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Courant obscurité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Dark current</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Corriente obscuridad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Photodétecteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photodetector</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fotodetector</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur II-VI</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>II-VI semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Détecteur IR</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Infrared detector</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Detector rayos infrarrojos</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Article synthèse</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Review</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Artículo síntesis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etat défaut</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Defect states</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Recombinaison Auger</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Auger recombination</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Recombinación Auger</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Piège</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Trap</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Trampa</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Lacune</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Vacancy</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cavidad</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Addition phosphore</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Phosphorus addition</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Adición fósforo</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Photodiode</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Photodiode</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Fotodiodo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Addition indium</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium addition</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Adición indio</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Addition azote</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Nitrogen addition</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Adición nitrógeno</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Doping</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Doping</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Ionisation choc</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Impact ionization</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Ionización choque</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Effet tunnel</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Tunnel effect</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Efecto túnel</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>8560G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>8105D</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>0757K</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>8560D</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>020</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>2012 U.S. Workshop on the Physics and Chemistry of II-VI Materials</s1>
<s3>Seattle, Washington USA</s3>
<s4>2012-11-27</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000886 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000886 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0021562
   |texte=   Modeling of Dark Current in HgCdTe Infrared Detectors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024